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A method for constructing a dual variational principle in geometrically non-
linear elasticity theory is elucidated, The dual functional (a functional of
Castigliano type) is evaluated in the case of an isotropic semilinear material.

1. Introduction, The true displacement field in geometrically linear
elasticity theory is the extremal of a Lagrange functional I (u) defined on admissi-
ble displacement fields u

8l (u) =0 (LD
and the true stress field is the extremal of the Castigliano functional J (6), defined
on the admissible stress fields @

6J (0) =0 (1.2

It is essential that the Lagrange and Castigliano functionals form a pair of dual fun-
ctionals, This means that in addition to(1.1) and (1. 2), the equation

inf, I () = supg J (0) (L3

is valid, The equality (1.3) permits the construction of two-sides estimates of the
elastic energy [1]. Two-sided estimates of the effective elastic moduli of micro-in-
homogeneous elastic bodies or inequalities permitting the proof of tae asymptotic acc-
uracy of applied theories of rods, plates, and shells result from these estimates, for
example,

Because of the nonconvexity, it is difficult to depend on the existence of a funct-
ional simultaneously satisfying the conditions (1. 2) and (1. 3) in the geometrically non-
linear theory of elasticity. Zubov [2] constructed a functional J(0) satisfying condit-
ion (1.2), Koiter [3] turned attention to the fact that the Legendre transformation used
in [2] results in a multivalued functional and it remains unclear how the branch of
J (o) should be selected, The Zubov paper [4] is devoted to this question.

A number of questions associated with the construction of the functional J (o) was
discussed in [5 —13], Let us also mention the works on variational problems wita non-
convex functionals [14, 15].

A functional J (0) is constructed below, which does not generally satisfy (1. 2),
however, is subject to the relationship

supe J (0) < inf, I (w) (1.4
An important property of the dual variational principle is hence conserved, the
possibility of constructing bilaterial energy estimates,

2, Lagrange functional, Letusconsider a geometrically nonlinear
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body occupying a domain V, with piecewise-smooth boundary @V, in the undefor-
med state, Let &' denote the coordinates of the Cartesian reference system of the
observer, and &P the coordinates of an accompanying reference system. The indic-
es by which manipulations occur during manipulation of the observer reference system
are marked by the symbols #, j, k,...,while manipulations in the accompanying co-
ordinate system are marked byp, ¢, 7, . . The locations of the particles in the unde-
formed and deformed states are given by the functions o = z,* (§?) and i =
zi (EP), respectively. The boundary AV, is separated into two parts, § and X,
where surface " dead” loads p; are given on S and the positions of the particles in the

deformed state ;
z' (E9) |z = o (EP) (2.1

are given on X.
Let us define the functional [16]

Iz (89)] = E () — 1 (z) (2.9

E@) = (U@)dv, 1@ = [Fa@ar+ | pad ) do
Vo Vo Ve
Here U is the intemal energy density, Z,’ = 0x'/ 0% is the strain gradient, F;
is the mass force density, Later we will assume that the minimum value of the funct-
ional (2. 2) is achieved on functions satisfying the condition
det || z,' | >0 23

The equilibrium positions of bodies are critical points of the functional (2,2) in a
set of functions satisfying conditions (2, 1).

Usually U is given in the geometrically nonlinear theory of elasticity as the con-
vex function €pq or v,

Epg = Y2 (8:i%5'%) — 8pa)y Vog = | % |og — | Zo lpg

o o . . - .
8oy = 8ifTop'Togy Topt = Oz / OFP, z;t = |z |,oAH

(2.4)

Here gi; and gy, are convariant components of the metric tensor in the observer
reference system and in the accompanying reference system in the undeformed state,
| Z |pq is the modulus of the tensor x,! defined by the Cayley polar expansion[17]},
| Z |pq is @ positive-definite symmetric tensor, A'? are components of the orthogon-

al matrix o4 ip) i€ i1 ip) 19 q
Epd MNPMT = gV g ;MPNT = gP (2.9)

| o |pq is the modulus of the tensor Zoy'. Juggling of the indices P, ¢, T, - - -
is accomplished by using the metric  £,¢" , and the indices i, j, k, . . . byus-
ing the metric &ij-

If the function U wereconvexin z,}, then the dual variational problem could
be constructed according to the general rule formulated in [18], However, U while
convexin €,4 O 7Yy, isnot convex in xp‘.

The following examples show this.

Example 1, Letus consider one-dimensional strain; a1l = 21 (£}), 2% = E?,
B =F, g,0=1 (we later omit the superscript 1), Let U’ be a quadratic form in
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epge Then U = Eg®, g = gy, = 1/, [(dz / 8E)* — 1] in the case under consideration,
The nonconvexity of U in 9z/df is evident,

Example 2. Letus consider an isotropic elastic semilinear material for which

the intemal energy density U has the form

U (vpg) = /b (8P%¥pa)® + 1 (Y790o)
Taking (2. 4) into account for the two-dimensional problem, we write the function U
as a function of =% (&, p=1,2) for A =0 in the form

U (5% = u (@02 + (P + (@22 + (222 — 2 [(ay! + 22 + (ot — 2201 + 2]

A necessary condition for convexity of a function of many variables is its convex-
ity in each of the variables. Verifying this condition for the function (2. 6) reduces to
investigating the sign of the second partial derivative of U with respect to each of the
variables zp* For instance, let us write down U /4 (z,!)

1 & (zg! — 222
T A TP B S 12

It is clear that z3l, z? and 2% can be selected in such a manner that 82U / @ (z,1)?
< 0, This indicates the nonconvexity of the function U in zph.

The static instability of elastic bodies as well as the presence of several equilibri-
um positions are related to the nonconvexity of the function I/ with respect to xt

3, Dual variational principle, Letusconsider the problem of
the minimum of the functional (2. 2) in all the functions satisfying the conditions(2. 1).
Let us assume that the minimum value of the variational problem (2. 2), (2. 1) is achie-
ved by functions satisfying conditions (2, 3).

Let U be an arbitrary continuously-differentiable function of Ypq (or equival-
ently, of |Z |s). Let us consider the function

U - { U (z,}, xpf: det || xpf >0 (3.1
+oo, 2 detfla,t <0

Let U* (0;7) be the Young transformation of the functions U (z,) relative to

z,)} * _ . )
v U* (@) = sups, [072,F — U ()] (3.2
Here 0" are dual variables. Let U** (z,7) be the Young transformation of the

functions U* (0,7)
U** () = supgp [z,j0 — O* (0:7)] (3.3)

It is known [19] that U** (z,!) is the maximum convex function in x’pi that does
not exceed U (z,).
Let us introduce the notation

1@ = [O@hdr—1@), E*of) = (0% (0P dr
Vo Vo

I* (0,7) = a-l’a":’:i dv — I(zs")
i i 3537 P

o
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where Zg' are arbitrary functions satisfying condition (2. 1).
We formulate the dual variational principle as a problem on the minimum of the

functional
J (07) = E* (0,7) — I* (0;7)

where the minimum is considered in all the O satisfying the conditions

Voir 25 dv — 1) =0 3.4

By the condition, (3.4) holds for any functions z” which vanisheson 3. If ¢
are continuously differentiable, then the constraints (3.4) can be rewritten in the
form (7, is the normalto S )
50{"’ /6§p ";‘ Fi =0 in VO’ O'ipnp = D; on S (3.9
Let us note that values of the functional [* (g;F) are independent of the select-
ion of the functions zg* because of (3.4).
Theorem 1. The following inequality is valid

SUPo,Pe(s.5) [—J (6:7)] < infgc @l (7))
Writing e (2.1) means that £+ satisfies the conditions (2. 1).
Proof., From the assumption that the minimizing element of the variational
problem (2. 1), (2. 2) satisfies condition (2. 3), we have

inf i @1

1Y = inf, iepn] (&) > inficey| | U**dv —1(H)] =
Vo

inf 5 SUD, 2 [§ (0Pz,} — U%)dv — 1(zh)] >

i ; Do i . i o _
SUPg Pe(s.5) mfx‘s(e.l) [ § 0z, dv — 1(z") ‘S U#* dr] -

SUPs Pe(s.5) [* (0.7) — E* (0;7)] = sup o Peies [ J (0]

Here we used a valid inequality for any functionali @ (z, o)
inf, sups @ (z, ©) > sups inf,® (z, o)

Therefore, the problem of constructing a dual variational principle reduces to
calculating the Young transformation of the function U.

4, On the Young transformation of the function
U. Let us consider the Young transformation of the function U in z,' (3.2, Let
us note that - . .
U* (of) = SUPxjic(2.9) loPx,t — U ()] 4.1

Lemma 1, Let 67 be an arbitrary tensor, and p,, a tensor satisfying the
orthogonality conditions

8" Ppebat = oy det || ppg || > 0 (4.2)

Then
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SUPp e 8 Moy =[O 1 4| 0, + | 6 |5 sgn det || 67

Here | 0 |; are the eigenvalues of the tensor | 6 [P? armanged in decreasing order.
Proof, 1°, Firstlet det[ 627> 0. Using the polar expansion of the tensor
872, ji.e., OPZ= |0 P8\, the assertion of the lemma can be rewitten in the

form
SUPy ,e@.2) (0P vps= |0+ 18} +18]s (4.3)

The tensor Vst which satisfies (4. 2) in a smooth coordinate system for the symm-
etric tensor |0 [P* is represented in the form of the product of three elementary rotat-
ions with independent Euler parameters 93, 93, .

The proof of (4, 3) reduces to evaluating the quantities

8 = sup,, o, (4 COSP COS Py — B sin @, sin @, -+ | 6 I3 cos ] (4. 4)
A=10|+|0cosp, B=|0}cosp+]6}]
Evaluation of the upper bound in @, yields
8 = supg, [(47 cos? @, + B2 sin? )" + | 6 |5 cos ]
Since 4 >0, A2 > B® (letusrecallthat [0, >8>0y, 4 and B are

independent of  @;, we obtain
0 =supy (4 +|0lgcos)= [0, +[0]54- 10,
2°, Let det] 677 < 0. In this case the assertion of the lemma has the form
Supustlelst”st =[0hL+10k—10]s

where the upper bound is considered in all the x, satisfying the conditions
goPY npsgt = gst°y  det frpg | <O (4. 5)

In this case the proof of the assertion is analogous to the proof in case 1°, It s
just necessary to reverse the sign before the term |6 | cos in (4. 4),

Remark, Letusnote that the assertion of Lemma 1 is not related to the order-
ing of the eigenvalues for det 877> 0, When det|0P?{ < 0, the assertion of
the lemma can also be represented in a form not assuming the ordering of the eigen-
values

SUPy, ta.2) 0P og = max [18 ]y + |8 | — 85, |8+ 015 — | By, |65+
[8h— 18]

Lemma 2 Let U depend only on the eigenvalues of the tensor | z|,, and
let | 0[P be the modulus of the tensor 0;”. Then the tensors | |,y and | o [P
are coaxial,

Theorem 2, Letthe function U satisfy the conditions of Lemma 2. Then
the Young's transformation of the function U is given in a smooth coordinate system
for the tensor | ¢ [?9, by the formula

Uy*, det] o 0
0% @y = { U100 detlo?l>
Us*, det|o[| <O
Ur* = suppysell zfi o ' — U (| 2)]
Us* = SUP[x}; >0 [max (1, g, Pg) — U (I x | i)

(4.6)
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1];1::Ixf3{0-13+]xfglclg—{xlllﬁil
Yo=|2ls]oP+|oh|z' —|z|| o
Ys=[z|of  + [zl —|zfs] o

where [ [; and [ o|; are, respectively, the eigenvalues of the tensors |  |pg and
[ol>

Proof. Letussubstitute the polar expansion of the tensors z,' and ¢ in
(4.1)

* (g.F) — »
U* (o) = sup xp’e(z.a)[lal 12 v’ — U (1 2 |pg)] (4.7
where v, is a tensor satisfying the conditions
8™V = g¢", sgn det || v || = sgn det || o;” | (4.8)

Let us evaluate the upper bound in (4. 7) successively by first taking the upper bound in
V¢ and thenin |z [,. Since U is independent of V., then finding the upper
bound in V,° reduces to evaluating the quantity
SUDy g BV O = [0 [P |zl (4.9)

From the coaxiality of the tensors | ¢ [P? and |z |, the eigenvalues of the ten-

sor | 0 [P have the form
|8} =|z]|o], i=1, 2, 3 (4.10)
whereupon (4. 9), (4,10) and Lemma 1 result in the assertion of the theorem,

In the case of an anisotropic elastic medium, the evaluation of U* is a complex
problem, Let us mention a simple method of estimating the minimum value of the
functional (2, 3) in this case,

Let U (| z |pg) be the internal energy density, s, {] « |pg), 83 (| = lpg)» and ss
(= lpq) the first, second,third invariants, respectively, of the tensor | |pg. Letus
consider the function

Uy (ryy 10 1) = inf, Flpg8=rp i=1,2,3 U (] 2 Ino)

Evidently U; << U. The function Uy can be considered as the intemal energy
density of some iostropic elastic material whose elastic characteristics are "less" than
the elastic characteristics of the initial anisotropic material.

Let us introduce the functional

I (@) = Y Uydt —1(5)
Vo
and let J, denote the functional dual to J,. Then
— i I, <i I
sup oipe'i(s.s) (=)< mfxie(ZJ-) 1% lnfxie(g'n

5, The functionU*for a semilinear material 1°
The function U* is evaluated especially simply in the case of 2 semilinear material
with zero Lamé coefficient A. We have from (4. 6)

Uy = 1/4}1«‘1 [IU|12+IU'22+‘0'132] +|0'l1+ l 0]2+ l 0"3

and U,* is the maximum of the values at the point | o |; for the function
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Y (0|0l | als)h v(ols |al, [ol), $(| ol |ols | 01),
where

P(ag, 0o, Ag) = Yy ar® + a® + B 4 a1 4 0, — B
B = { p=uas 032
CUB=2p, 4 >2
2°, Let us examine the plane case: 2% = z% (E!, %), 2°® = E® (the Greek
superscripts run through the values 1,2). Then | ¢ |3 = 0, y; = 0, and the Young
transformation of U (| & |x) has the form

U =Yp o+ ol +|olt+]|al

Yol ol + o]l +[of— [l [0 & 2
Up* = (-2

Yap o +]ofh—p, jolae=2,

where 213, Za1, X1, X, are domainsin the plane (| 01, | 0;) indicated in
Fig.1, and | O |u are eigenvalues of the tensor | O |pq-

The function J** (zp') permits an assessment of the nature of the roughness occ-
urring in going over to the dual variational problem, If U** = U, then the dual var-
iational problem is an accurate reformulation of the initial problem. If O** differs
negligibly from U, then it can be expected that the solution of the dual problem will
differ negligibly from the initial problem in the energy norm,

lel, AN )
SR 7 V/ /
7 7
2 [T 7
// Zm |
1
2 |8,
Fig.1

A calculation by means of (3. 3) yields

B+ 1) v

TRk (o By
s () = { Yap(h—v)% vWETD

where Yo are the eigenvalues of the tensor Vags Iy, Ty are domains of the plane
(Y1, 72) indicated in Fig, 2,

Therefore, [J** = [J if the deformations lie in the domain T, This dom-
ain consists of tensions along both axes as well as compression along one axis and tens-
ion along the other for which the tension is greater than the compression. In the dom-
ain I'; (all the remaining cases) [J** << {J, wherein Iy
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O — U** = Yyu (31 + 79)? (5.1)

If a solid is subjected to deformations for which Va lie in the domain Iy, then
the dual principle yields the same solution as the initial,

If the true deformations 9y, ¥, lie in the domain T'y, then the dual principle
will not result in the exact solution, The nature of the energy error is determined by

(5.1
3° Let us present the result of evaluating the function U* for A = 0. Accord-
ing to Theorem 2

U* (o) = { U*(|6fs |0l [0]s), 07: det]o| >0
' Us* (0, |0l |0]s), 0”2 det] o[ O
where U,* (| o|;) is the maximum value at the point | o|; for the functions
U (=)0 [0 |0l T*(oh —[0k 10l U*(ch [o],
— | ols)
Let us divide the domain of variation of the variables | O |1, [ 0]y, | 0[5 into

ten domains X2, 2y, 21, 217 Dg, Bay D", g, B9, Bg . The domains X,
2:12124" are defined by the relationships

Siloh>v(olk+]ol) —E lol>v(oh+ (5.2
loly) —E, |ols>v(oh+]|0ol)—E
Zitjoh<v(ok+lal)—E loly> ool — E/(1 — ),
|ojs>0la)— E/(1 —v)
S/ |oh<v(olt+ ol —E, 0<]|olk<<olols—E/t —v)
S iloh<v(ol+|ol)— £ 0<|ols<o|oly— E(t =)

A _ Sht2p SR
vEaaTrw ET o M T T

In these domains the function U1* (| o |;) has the form
1/4!"".1[!0112—!_'0'22"*‘46‘32“"3;\'__?__2'6’('011"}"'0‘2+|U|3)2]+ (5.3)
(ol [oh-+ ol i 3
A
1/49_1[10{22%‘10?32“m(}ﬁla‘i“l@fs“zuﬂ+

|ole+]ols—p in 2

SBEEY clob-t0 b 2

.(g_j{_*{-z?.:‘_))’-ﬂohmz(wm in %"

The domains 3,, 35, 2,", Zg I3, g and the values of the function U*
at these domains are obtained from (5. 2) and (5. 3} by cyclic permutation of the sub~

scripis,
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The form of the functions Ur* can be simplified substantially if a neighborhood
of the unstressed state of radius 7ry is considered, where ro = E / Vﬁ[ 4+ 292 (it
is easy to see that the point (0, 0, 0) in the space of the variables (] 0 |¢, | 6 |5,
| o |s) belongsto X, and r, isthe distance from the point (0, 0, 0) to each
of the planes bounding X ).

Then in the neighberhood under consideration

0% (o) = Hap [[olt + ol + ok — 15 (ok+ ol +

ok ] + [0l + ol +] ol
for det [ o;* [ > 0.
If det]o,”j<<O

t_]*(ﬂi”)“lhi"['“llz'{"|0|22+{Ulsﬂ'" 1_‘;_\, (oh+

loh—lok?]+loh+[ok—]|ol;

where the eigenvalues of the tensor | ¢ |P? are enumerated in decreasing order,
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