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A method for constructing a dual variational principle in geometrically non- 

linear elasticity theory is elucidated. The dual functional (a functional of 

Castigliano type) is evaluated in the case of an isotropic semilinear material. 

1. I n t r o d u c t i o n. The true displacement field in geometrically linear 
elasticity theory is the extremal of a Lagrange functional 1 (u) defined on admissi- 

ble displacement fields u 

61 (24) = 0 (1.1) 

and the true stress field is the extremal of the Castigliano functional J ((J), defined 
on the admissible stress fields U 

6J (a) = 0 (1. 2) 

It is essential that the Lagrange and Castigliano functionals form a pair of dual fun- 
ctionals. This means that in addition to (1.1) and (1.2), the equation 

inf, I (u) = sup,, J (a) ( 1.3) 

is valid. The equality (1.3) permits the construction of two-sides estimates of the 

elastic energy [l]. Two-sided estimates of the effective elastic moduli of micro-in- 
homogeneous elastic bodies or inequalities permitting the proof of tile asymptotic acc- 
uracy of applied theories of rods, plates, and shells result from these estimates, for 

example. 
Because of the nonconvexity, it is difficult to depend on the existence of a funct- 

ional simultaneously satisfying the conditions (1.2) and (1.3) in t’ne geometrically non- 
linear theory of elasticity. Zubov [2] constructed a functional J (0) satisfying condit- 

ion (1.2). Koiter [3] turned attention to the fact that the Legendre transformationused 
in [2] results in a multivalued functional and it remains unclear how the branch of 

J (a) should be selected. The Zubov paper [4] is devoted to this question. 
A number of questions associated with the construction of the functional J (a) was 

discussed in [5 -131. Let us also mention the works on variational problems witn non- 
convex functionals [14,15]. 

A functional J (a) is constructed below, which does not generally satisfy (1.2), 
however, is subject to the relationship 

SUP, J W < inf, I (u) ( 1.4) 

An important property of the dual. variational principle is hence conserved, the 
possibility of constructing bilaterial energy estimates. 

2. Lagrange functional. Let us consider a geometrically nonlinear 
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body occupying a domain v,-, with piecewise-smooth boundary dv, in the undefor- 
med state. Let ~5 denote the coordinates of the Cartesian reference system of the 

observer, and EP the coordinates of an accompanying reference system. The indic- 

es by which manipulations occur during manipulation of the observer reference system 

are marked by the symbols i, j, k, . . . , while manipulations in the accompanying co- 

ordinate system are marked byp, Q, r, . . The locations of the particles in the unde- 
formed and deformed states are given by the functions x0< = xOi (cp) and xi = 

xi (EP), respectively. The boundary dV, is separated into two parts, S and 2, 
where surface ” dead” loads pi are given on 8 and the positions of the particles in the 

deformed state 

are given on 2 l 

Let us define the functional [16] 

I [xi @)I = E (xi) - I (b) (2.2) 

E (xi) = i U @pi) dr, 
VO 

I(?) = 1’ F,si(g?)& + J p$*(~*)do 
VO avo 

Here U is the internal energy density, xPi = dti / a@ is the strain gradient, Fi 
is the mass force density. Later we will assume that the minimum value of the funct- 
ional (2.2) is achieved on functions satisfying the condition 

det II si II > 0 (2.3) 

The equilibrium positions of bodies are critical points of the functional (2.2) in a 

set of functions satisfying conditions (2.1). 

Usually U is given in the geometrically nonlinear theory of elasticity as the con- 

vex function apcl or yPlr 

%W = l/s (gijx~‘s,3 - gpg’), Ypq = 1 z Jpq - 1 2o lpq 
(2.4) 

G-Y ’ = gijXOPiXOq’, X()pi = dxoi / ap, XPi = 1 X Ip,?iiq 

Here gij and gPqo are convariant components of the metric tensor in the observer 
reference system and in the accompanying reference system in the undeformed state, 

15 Ipa is the modulus of the tensor xp i defined by the Cayley polar expansion[17], 

x pq is a positive-definite symmetric tensor, hiQ are components of the orthogon- 

al matrix 
gpqohi%jq = &I, gijhiph3q = gop~ 

I x0 IPf? is the modulus of the tensor xop’. Juggling of the indices p, Q, r, . . - 

is accomplished by using the metric gPP” * and the indices i, j, k, . . . by us- 

ing the metric gij- 

If the function U were convex in xpi, then the dual variatinal problem could 

be constructed according to the general rule formulated in [18]. However, u while 

convex in Epq or ypq is not convex in xpi. 
The following examples show this. 
8x ample 1. Let us consider one-dimensional strain: 51 = 21 (Cl), 2% = ES, 

xs = p, gllo = 1 (we later omit the superscript 1). Let U’ be a quadratic form in 
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8pq. Then U = EeQ, e = en = *Ia [(& / @ja - II in the case under consideration, 
The nonconvexity of U in ax / 8% is evident. 

E x a m p 1 e 2. Let us consider an isotropic elastic semilinear material for which 
the internal energy density U has the form 

l? (YP4) = ‘Q” (&r%q)a + P (YP%Jq) 

Taking (2.4) into account for the tw~dime~onal problem, we write the function U 
as a function of spa, (a, p = 1, 2) for X = 0 in the form 

If (zp”) = @ {(q)s + (2a’)s + (ss)s + (222)s - 2 [&I’ + zza)” + @z’ - ~l921”’ + 21 

A necessary condition for convexity of a function of many variables is its convex- 
ity in each of the variables. Verifying this condition for the function (2.6) reduces to 
investigating the sign of the second partial derivative of U with respect to each of the 
variables zp”. For instance, let us write down dsU / a (@)s 

It is clear that zs? zrs and xss can be selected in such a manner that @U / 8 (z?)* 
< 9. This indicates the nonconvexity of the function U in xpr. 

The static instability of elastic bodies as well as the presence of several equilibri- 
um positions are related to the nonconvexity of the function U with respect to Xp”. 

3. D u a 1 v a r i a t i o n a 1 p r i n c i p 1 e. Let us consider the problem of 
the minimum of the functional (2.2) in all the functions satisfying the conditions(2. 1). 
Let us assume that the minimum value of the variational problem (2.21, (2.1) is achie- 
ved by functions satisfying conditions ( 2.3). 

Let u be an arbitrary continuously-differen~able function of Tp,r (or equival- 
ently, of 1 5 I,,>- Let us consider the function 

tf = 

( 

u (Xp’), Xpt : det 11 xp’ [I> 0 (3.1) 
+ *7 Xpi : det 11 xpi II< 0 

Let u* (UiP) be the Young transformation of the functions 0 (X,*) relative to 

5’ ff* (clip) = sup, 2 [a p i 
P i xp - tT ($91 

(3,2> 

Here ogr, are dual variables. Let o** (xi) be the Young transformation of the 
functions U* (trip) 

O** (xpi) = SUpaip [xp%ip - Ip* (@)I (3.3) 

It is known Cl93 that U** 
not exceed u (Xpi). 

(zJ,“) is the maximum convex function in XP’ that does 

Let us introduce the notation 

1(xi) = JzqIc,‘)dz - 1 (Xi), 
VO 

E* (a*‘) = J U* (oip) do 
VO 



346 V, L. Berdichevskii and V. A. Misiura 

where xc8 are arbitrary functions satisfying condition (2. l), 
We formulate the dual variational principle as a problem on the minimum of the 

functional 
J (UiP) = E” (ain) - I* @rip) 

where the minimum is considered in all the oi* satisfying the conditions 

s 
VP 

c+dr-Z(x’“)=O 

By the condition, (3.4) holds for any functions 2’: which vanishes on 2. If Oi” 
are continuously differentiable, then the constraints (3.4) can be rewritten in the 
form (BP is the normal to S ) 

&Q’ /@’ -+ Fi = 0 in V,, Oi”?$ = Pi on S (3. 5) 

Let us note that values of the functional 2* (ai*) are independent of the select- 
ion of the functions xX% because of (3.4). 

Theorem 1. The following inequality is valid 

SUpoirkfs.s) I-J (o?)I < iUf& (s.r$ (x7 

writing xi E (2.1) means that x’ satisfies the conditions (2. 1). 
P r o o f. From the assumption that the minimizing element of the Variational 

problem (2. l), (2.2) satisfies condition (2.31, we have 

Here we used a valid inequality for any functional cf, (2, 0) 

inf, sup0 @ (x, 0) > sups inf,Q (x, 0) 

Therefore, the problem of constructing a dual variational principle reduces to 

calculating the Young transformation of the function 0. 

4. On the Young transformation of the function 
8. Let us consider the Young transformation of the function D in xn’ (3.2). Let 

us note that 
rf* (Q) = SUpzPiE(s.s) loipxni - U (Xpi)] (4.1) 

L e m m a 1. Let epq be an arbitrary tensor, and ppa a tensor satisfying the 

orthogonality conditions 

gOPqPr&rt = gz?:stO, det II PP(1 II > 0 
(4.2) 

Then 
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Here 1 8 li are the eigenvalues of the tensor I e I”” arranged in decreasing order. 

Proof. 1”. First let det [I @q (1 > 0. Using the polar expansion of the tensor 

6nq, i.e.. @(I = 18 ph,q, ’ the assertion of the lemma can be rewitten in the 

form 

The tensor vst which satisfies (4.2) in a smooth coordinate system for the symm- 
etric tensor 1 e I@ is repraented in the form of the product of three elementary rotat- 

ions with independent Euler parameters ~1, %, 9. 
The proof of (4.3) reduces to evaluating the quantities 

8 = suPcpt,cpn,q Ed COS ‘PI c*s ‘ps -Bsincp,sincps+18 IsCoa$l (4.4) 

A = l6~~+~@~~~oa~, B= ~8J~cos~+lel~ 

Evaluation of the upper bound in 9% yields 

B = SUP,,~ [(da co@ qr + Ba sin* ~p3”~ + } 0 1s cos $1 

Since A > 0, A* > Bs (let us recall that 18 1% > 18 Ia >, 10 i& A and B are 
independent of rpl, we obtain 

e=supQ(d +I~19~~~9)=ie~r+~~ia+~e~s 

2”. Let det I/ fw II < 0. In this case the assertion of the lemma has the form 

aupx,l 16 ISf x5t = I 9 II + I 0 I* - I fJ la 
where the upper bound is considered in all the x,t satisfying the conditions 

g,pQ xpsxqt = gsfot det 11 xpQ Ii < 0 (4.5) 

In this case the proof of the assertion is analogous to the proof in case 1’. It is 
just necessary to reverse the sign before the term I 8 Is cos 9 in (4.4). 

R e m a r k Let us note that the assertion of Lemma 1 is not related to the order- 

ing of the eigeuvalues for det ]BPq I> 0 , When det 113XJq fi < 0, the assertion of 

the lemma can also be represented in a form not assuming the ordering of the eigen- 

values 
aup~~*~(~*s) epqi% = max ft 8 1% + i 0 is - i e Is, i e l2 + I 6 ts,- 18 iI, 19 is+ 

I fJ I1 - I 8 la1 

L e m m a 
let 1 C 1”” 

2. Let U depend only on the eigenvalues of the tensor f II: Ip4 and 

be the modulus of the tensor oip. Then the tensors I x Jpq and 1 o jP* 
are coaxiat 

T h e o r e m 2, Let the function U satisfy the conditions of Lemma 2. Then 
the Young’s transformation of the function 0 is given in a smooth coordinate system 

for the tensor 1 (T IPQ, by the formula . 

cP(UjP) = ( UI*, det II ~8’ Ii > 0 
U2*, det 11 uip II\< 0 

(4.6) 

ul* = s”P~Xjj>O 11 x ii I u Ii - u ( f 5 ii)1 
ua* = SUPixil>o [max (91, $2, 9.4 - U (I 2 I i)l 
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‘1171 = f x Is I 

4% =]&I 

93 = I 3 11 I 

where 1 X It and I o ii 

1 u I”. 
are, respectively, the eigenvalues of the tensors 1 x Ipp and 

P r o o f. Let us substitute the polar expansion of the tensors a$,’ and GZ” in 
(4.1) 

f7* (UiP) = sup z i_s 3) [ I cT I”” I t IPSG - u (I 5 Ipq)l 
P ’ 

(4.7) 

where YpS is a tensor satisfying the conditions 

g*p~~p~~*~ = go”‘, sgn det 11 vgs 11 = sgn det 11 trip 11 (4*81 

Let us evaluate the upper bound in (4.7) successively by first taking the upper bound in 
vqs and then in 1 z jpq. 

bound in Y*’ 
Since u is independent of Y,‘, then finding the upper 

reduces to evaluating the quantity 

S”P,,S~{&Q @SP%A OSP = I (3 1”” I 5 I@ (4.9) 

From the coaxiality of the tensors 1 o 1”” and I 2 Ire the eigenvalues of the ten- 
sor 1 8 ls”J have the form 

I 8 IZ = Ix Ii I Cr Ji, i = 1, 2, 3 (4,101 

whereupon (4.91, (4.10) and Lemma 1 result in the assertion of the theorem, 
In the case of an anisotropic elastic medium, the evaluation of e* is a complex 

problem, Let us mention a simple method of estimating the mi~mum value of the 
functional (2.3) in this case. 

Let W (I a~ Ipq) be the internal energy density, s1 (I z IPa), ss (1 z Ipq), and as 
(I 5 1s~~) the first, second,third invariants, respectively, of the tensor [ 3: IP,~ Let us 
consider the function 

r-J1 (FlP Q* %) = iq x ipp : siGJ.i’ i+ i, 2, 3 u (I z IPd 

Evidently UX d W. The function U, can be considered as the internal energy 
density of some iostropic elastic material whose elastic characteristics are “less” than 
the elastic characteristics of the initial anisotropic material. 

Let us introduce the functional 

and let J, denote the functional dual to I,. Then 

5, The function@*for a semilinear material, 1’. 
The function o* is evaluated especially simply in the case of a semilinear material 
with zero Lam6 coefficient h. We have from (4.6) 

ux* = l/#-r rl B 11” + I (J 12” + I rs Is21 + I @ II -t- I CJ I2 + I cf I3 

and us* is the maximum of the values at the point 1 ET Ii for the function 
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qI ( 1 (T 11, 1 0 12, 1 [J Is), 9 (I cf I37 I 0 I17 I iJ Iah II, (I cT 127 I cJ 137 I = ll)y 
where 

‘II, (a19 a21 a31 = 1/4p-1[%2 + a22 + PI + al+ a2 - B 

B a3\(& 

B= { fL;, u2>2p 

2". Let us examine the plane case: ~9 = ~9 ( El, Zj2), z3 = ES (the Greek 
superscripts run through the values 1,2). Then f (3 f3 = 0, y3 = 0, and the Young 

transformation of U (I x lo) has the form 

Ul" = Q-k-l rl a I12 It 1 (J 1221 + 1 (J Ix + [ 012 

us* = 

i 

l/4 p-1 [I 0 I12 + 10 Ia*1 + IO I1 - 1427 I@ ICC EL2 
(14 

‘la p-1 10 II” + J 0 II - P, plCGE& 

where 212, 221, indicated in 
Fig. 1, and 1 (r /CC 

81, Z, are domains in the plane (1 G 11, 1 (T 1%) 
are eigenvalues of the tensor I f3 IPP* 

The function i?** fq,*) permits an assessment of the nature of the roughness occ- 
urring in going over to the dual variational problem, If U** = 0, then the dual var- 

iational problem is an accurate reformulation of the initial problem. If U** differs 

negligibly from U, then it can be expected that the solution of the dual problem will 
differ negligibly from the initial problem in the energy norm, 

Fig. 1 Fig. 2 

A calculation by means of (3.3) yields 

u** cc) = 
I 

P(Y12 + Ye2h 'yCSEZr1 

l/2 p(yl _ ?2)a, 
%Era 

where Ya are the eigenvalues of the tensor Y@Y rl, rs are domains of the plane 
(yi, ys) indicated in Fig. 2. 

Therefore, O** = 0 if the deformations lie in the domain rl. This dom- 
ain consists of tensions along both axes as well as compression along one axis and tens- 
ion along the other for which the tension is greater than the compression. In the dom- 
ain r2 (all the remaining cases) U** < 0, where in rs 
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0 - 0”” = l/# (y1 + y$)a (5.1) 

If a solid is subjected to deformations for which jJo lie in the domain rl, then 
the dual principle yields the same solution as the initial, 

If the true deformations ylc ys lie in the domain I‘s , then the dual principle 
will not result in the exact solution, The nature of the energy error is determined by 
(5. I). 

3’ Let us present the result of evaluating the function u* for A # 0. Accord- 
ing to Theorem 2 

‘* (Oip) = { 

UI” (I o 11, I cs 12, I 0 f& 04’ : det II Q’ II > 0 
Us* (I u II, I (J is, I cr Ia), oiP : det 11 criP II< 0 

where V,* (J CT Ii) is the maximum value at the point { (r 1~ for the functions 

“; ‘;I o fl, f cf 12, 1 0 13). ri,* <I CJ 11, - I 0 127 I @ Id, u1* (I Q il7 I fJ 12, 

= 3. 

l.,et us divide the domain of variation of the variables I CI 11, f CT 12, 1 G 1s into 
ten domains Z, 21, x:1’, xl’, zs, Es’, Es”, Es, Xs’, 2s”. The domains 2, 
&I&‘&” are defined by the relationships 

2: I 0 11 > v (1 u 12 + I cr 13) - E, I tJ I2 > v (I (J 11 + (5*2) 

I m -E, I q3a v (I 41 + 142) - E 

xi : 1 0 II< v (1 (J 12 + I CT 13) - E, 1 0 12 a @ I43 - E/(1 - v), 

I CT 13 > CI f CI 12 - Ei(l - v) 

x1 : l a lI < v (1 u 12 + l CF 13) - E, 0 < 1 a 12 < (J l * 13 - E/(4 - v) 

21” : 1 B 11-c v (I G I2 + 1 c 13) - E, 0 f 1 CT Is < ~1 (r I2 - E/(1 - v) 

h ES 3h.+2p s 
v= 2(ht_)l)’ hfy P7 a== 

In these domains the function ul* (\ o Ii) has the form 

I/* p-l [I (3 II” + I (3 12 4- I cf 13” -3*p(l~11+I’Jla+l~13)2] -I- (5.3) 

l~~~+~~l~+lu~a in 2 

94 P-l [I ~12” + I@ l33 - q&q (IcrC+lob-21L)2] + 

l42+j(3/3-p in 21 

‘~(~~~~~ +la13-2(h+p) in 21 

(16i4+2h)B +Iola--2(h+p) in Z/ 
2 (h + 2P) 

Thedomains Z,, Xz’, xzs, xa, x3’, x3 * and the values of the function ul* 

at these domains are obtained from (5.2) and (5.3) by cyclic permutation of the rub- 

scripts. 
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The form of the functions f-fr* can be ~mp~fied ~bstantially if a neighbo~ood 

of the unstressed state of radius ro is considered, where To = E I vl + 2va (it 
is easy to see that the point (0, 0, 0) in the space of the variables 

1 (T Is) belongs to Z , 
(1 o jr, 1 CJ 12, 

and r,, is the distance from the point (0, 0, 0) to each 

of the planes bounding Z ). 
Then in the neighbtiood under consideration 

g*(oip) = %p I+*+ JoJa2+ IoIss [ --+Jl4I+Iala+ 

I(w] +l~lIs+l~la+l~l3 

for det 1 03 11 > 0 . 
lf det/Iaipi<O 

where the eigemalues of the tensor 1 (r f PQ are enumerated in decreasing order. 
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